Remaining Useful Life Estimation of Insulated Gate Biploar Transistors (IGBTs) Based on a Novel Volterra k-Nearest Neighbor Optimally Pruned Extreme Learning Machine (VKOPP) Model Using Degradation Data
نویسندگان
چکیده
The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the remaining useful life (RUL) of an IGBT to ensure the safety and reliability of the power electronics system is currently a challenging issue in the field of IGBT reliability. The aim of this paper is to develop a prognostic technique for estimating IGBTs' RUL. There is a need for an efficient prognostic algorithm that is able to support in-situ decision-making. In this paper, a novel prediction model with a complete structure based on optimally pruned extreme learning machine (OPELM) and Volterra series is proposed to track the IGBT's degradation trace and estimate its RUL; we refer to this model as Volterra k-nearest neighbor OPELM prediction (VKOPP) model. This model uses the minimum entropy rate method and Volterra series to reconstruct phase space for IGBTs' ageing samples, and a new weight update algorithm, which can effectively reduce the influence of the outliers and noises, is utilized to establish the VKOPP network; then a combination of the k-nearest neighbor method (KNN) and least squares estimation (LSE) method is used to calculate the output weights of OPELM and predict the RUL of the IGBT. The prognostic results show that the proposed approach can predict the RUL of IGBT modules with small error and achieve higher prediction precision and lower time cost than some classic prediction approaches.
منابع مشابه
Machine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملA prognostic approach for non-punch through and field stop IGBTs
0026-2714/$ see front matter 2011 Elsevier Ltd. A doi:10.1016/j.microrel.2011.10.017 ⇑ Corresponding author at: Center for Advanced Lif University of Maryland, College Park, MD 20742, Uni E-mail address: [email protected] (M. Pecht). Development of prognostic approaches for insulated gate bipolar transistors (IGBTs) is of interest in order to improve availability, reduce downtime, and prevent...
متن کاملFailure Precursors for Insulated Gate Bipolar Transistors (IGBTs)
Failure precursors indicate changes in a measured variable that can be associated with impending failure. By identifying precursors to failure and by monitoring them, system failures can be predicted and actions can be taken to mitigate their effects. In this study, three potential failure precursor candidates, threshold voltage, transconductance, and collector-emitter ON voltage, are evaluated...
متن کاملOP-KNN: Method and Applications
This paper presents a methodology named Optimally Pruned K-Nearest Neighbors (OP-KNNs) which has the advantage of competing with state-of-the-art methods while remaining fast. It builds a one hidden-layer feedforward neural network using K-Nearest Neighbors as kernels to perform regression. Multiresponse Sparse Regression (MRSR) is used in order to rank each kth nearest neighbor and finally Lea...
متن کاملA faster model selection criterion for OP-ELM and OP-KNN: Hannan-Quinn criterion
The Optimally Pruned Extreme Learning Machine (OPELM) and Optimally Pruned K-Nearest Neighbors (OP-KNN) algorithms use the a similar methodology based on random initialization (OP-ELM) or KNN initialization (OP-KNN) of a Feedforward Neural Network followed by ranking of the neurons; ranking is used to determine the best combination to retain. This is achieved by Leave-One-Out (LOO) crossvalidat...
متن کامل